

Serie LS

2

Kettenbänder standardmäßig aus gehärtetem Stahl

Serie LSX

Kettenbänder aus rost- und säurebeständigem Stahl

1

- 1 Alle Stege im 1 mm Breitenraster lieferbar
- 2 4-fach verschraubte Aluminiumstege für extreme Belastungen
- 3 Rollen-Stege
- 4 Aluminium-Lochstege
- 5 Rahmen-Aufbaustege
- 6 Anschläge in Kettenlasche integriert - keine zusätzlichen Bolzen notwendia
- 7 Verschiedene Separierungsmöglichkeiten der Leitungen
- 8 Trennstege aus Kunststoff oder Stahl
- 9 Gewichtsoptimierte Kettenbänder ausgehärtetem Stahl oder **Fdelstahl**
- 10 Optionaler Zentralbolzen für hochbelastete Anwendungen
- 11 Gutes Verhältnis von Innen- zu Außenbreite kein Randtrennstea notwendig
- 12 Anschlusswinkel für unterschiedliche Anschlussvarianten

Eigenschaften

- » Gewichtsoptimierte einteilige Laschenkonstruktion
- » Preiswerter als vergleichbare Stahlketten
- » Deutlich höhere freitragende Längen im Vergleich zu Kunststoffketten vergleichbarer Größe
- » Integrierte Radius und Vorspannungsanschläge im preiswerten Design
- » Verschraubte Stegsysteme, massive Anschlusswinkel
- » Abdeckung mit Stahlband auf Anfrage lieferbar
- » Auch als Doppelbandlösung möglich
- » Gute Korrosionsbeständigkeit

Gewichtsoptimierte Kettenlaschen bestehen aus nur einer Platine - das Anschlagsystem ist integriert

Leichte Seitenbänder ohne zusätzliche Bolzen - gehärteter Stahl oder Edelstahl

Die Konstruktion

Durch die gewichtsoptimierte Laschenkonstruktion sind die Ketten sehr leicht und dennoch sehr stabil. Die freitragende Länge ist bei der LS-Serie im Vergleich mit Kunststoffketten vergleichbarer Größe deutlich höher.

Optional: Zentralbolzen und Sicherungsring für hochbelastete Anwendungen

Optional: C-Schiene für Zugentlastungselemente im Anschluss fixiert

Serie XLT

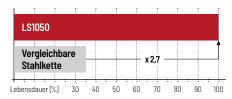
ROBOTRAX® System

FLATVEY0R®

CLEANVEYOR®

Stabil und langlebig auch unter extremen Bedingungen

Doppelbandkette Energieführung aus Stahl LS1050


- » Bis zu 40 % größere freitragende Länge im Vergleich zur LS 1050 mit Standard-Seitenband bei gleicher Zusatzlast, im Rahmen des Belastungsdiagramms
- » Sehr große Zusatzlasten: bis 40 kg/m möglich
- » Lange Lebensdauer auch bei großer dynamischer Belastung
- » Hohe Verfahrgeschwindigkeiten

Längere Lebensdauer durch gehärtete Kettenbänder

Durch die gehärtete Oberfläche wird die Lebensdauer der LS1050 wesentlich erhöht. Getestet wurden baugleiche Ketten.

Die LS1050 ist somit bestens geeignet bei Anwendungen mit vielen Verfahrzyklen wie beispielsweise im 3-Schicht-Betrieb.

Serie S/SX

Lei-

tunas-

 d_{max}

[mm]

46

46

43

38

Zusatz-

last

 \leq [kg/m]

35

35

35

35

35

35

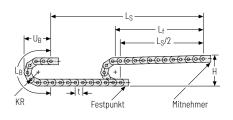
KR

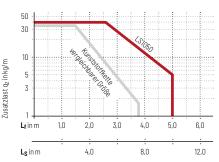
Serie XLT

ROBOTRAX® System

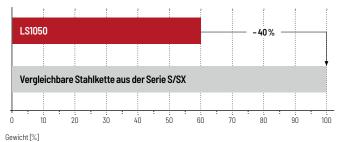
CLEANVEYOR®

Serie LS/LSX


Serie S/SX


Serie LS/LSX | Übersicht

Freitrag	Freitragende Anordnung			Gleitende Anordnung			Innenaufteilung				Bewegung		
Verfahr- weg ≤[m]	V _{max} ≤[m/s]	a max ≤ [m/s ²]	Verfahr- weg ≤[m]	V _{max} ≤ [m/s]	a max ≤ [m/s ²]	TSO	TS1	TS2	TS3	vertikal hängend oder stehend	auf der Seite liegend	Drehbewegung	Seite
9,5	5	10	-	-	-	•	•	•	•	•	-	-	722
9,5	5	10	-	-	-	•	•	•	•	•	-	-	726
9,5	5	10	-	-	-	•	•	-	-	•	-	-	730
9,5	5	10	-	-	-	-	-	-	-	•	-	-	732
9,5	5	10	-	-	-	•	-	-	-	•	-	-	734
9,5	5	10	-	-	_	•	-	-	-	•	-	-	736


Deutlich höhere freitragende Längen im Vergleich zu Kunststoffketten vergleichbarer Größe

Belastungsdiagramm für freitragende Länge in Abhängigkeit von der Zusatzlast

${\it Gewichts optimierung\ durch\ angepasste\ Laschenkonstruktion}$

Zubehör

LS/LSX1050

Stegbauarten

Aluminiumsteg RS 2...... Seite 722

Rahmensteg Schmal, verschraubt

- » Schnell zu öffnen und zu schließen.
- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Einfache Schraubverbindung.
- » Außen/Innen: Verschraubung einfach zu lösen.

Aluminiumsteg RV...... Seite 726

Rahmensteg Verstärkt

- » Aluminium-Profilstäbe für mittlere bis starke Belastungen und große Kettenbreiten. Beidseitig doppelte Schraubverbindung.
- » Außen/Innen: Verschraubung einfach zu lösen.

Rohrsteg RR Seite 730

Rahmensteg, Rohrausführung

- » Rollensteg aus Stahl mit schonender Leitungsauflage und Stahl-Trennstegen. Ideal für den Einsatz von Medienschläuchen mit weichen Ummantelungen.
- » Außen/Innen: Verschraubung lösbar.

Lochsteg, geteilte Ausführung

- » Optimale Leitungsführung in der neutralen Biegelinie. Geteilte Ausführung zur einfachen Leitungsführung. Stege auch ungeteilt lieferbar.
- » Außen/Innen: Verschraubung einfach zu lösen.

Aluminiumsteg RMAI Seite 734

Rahmen-Aufbausteg

- » Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Innen: Verschraubung einfach zu lösen.

Aluminiumsteg RMA0 Seite 736

Rahmen-Aufbausteg

- » Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Außen: Verschraubung einfach zu lösen.

TOTALTRAX® Komplettsysteme

Profitieren Sie von den Vorteilen eines TOTALTRAX®-Komplettsystems. Eine Komplettlieferung aus einer Hand - auf Wunsch mit Gewährleistungszertifikat! Erfahren Sie mehr unter tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® Leitungen für Energieführungen

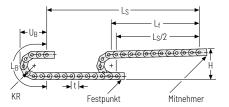
Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter tsubaki-kabelschlepp.com/traxline

TRAXLINE®

120

Serie XLT

R0B0TRAX® System


CLEANVEYOR®

Serie LS/LSX

Serie S/SX

LS/LSX1050 | Einbaumaße | Freitragend

Freitragende Anordnung

KR [mm]	H [mm]	L _B [mm]	U _B [mm]
105	330	540	250
125	370	603	270
155	430	697	300
195	510	823	340
260	640	1027	405
295	710	1137	440
325	770	1231	470
365	850	1357	510
430	980	1561	575

Einbauhöhe Hz

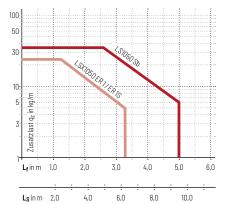
 $H_7 = H + 10 \text{ mm/m}$

Belastungsdiagramm für freitragende Länge

in Abhängigkeit von der Zusatzlast.

Ketteneigengewicht $q_k = 3.8 \text{ kg/m}$. Bei abweichender Innenbreite verändert sich die maximale Zusatzlast.

Geschwindigkeit bis 5 m/s


Beschleunigung bis 10 m/s2

Verfahrweg bis 9,5 m

Zusatzlast bis 35 kg/m

Auslegungshinweise für Zentralbolzen und Steganordnung

- » Kettenlänge < 4 m: halbstegige Anordnung als Standard
- Kettenlänge > 4 m: vollstegige Anordnung erforderlich
- » Stegbreite B_{St} > 400 mm: vollstegige Anordnung erforderlich
- Verfahrgeschwindigkeit > 2,5 m/s: vollstegige Anordnung erforderlich
- » Einsatz von Stützrollen: Zentralbolzen **und** vollstegige Anordnung erforderlich

Serie XLT

ROBOTRAX® System

CLEANVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

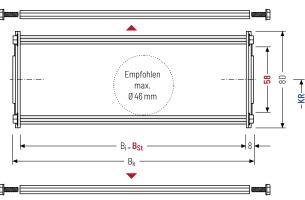
Zubehör

LS/LSX1050 RS 2 | Abmessungen · Technische Daten

Aluminiumsteg RS 2 -

Rahmensteg Schmal, verschraubt

- » Schnell zu öffnen und zu schließen
- » Aluminium-Profilstäbe für leichte bis mittlere Belastungen. Einfache Schraubverbindung.
- » Kundenindividuell im 1 mm Raster lieferbar.
- Außen/Innen: Verschraubung einfach zu lösen.



Steganordnung an jedem 2. Kettenglied, Standard (HS: halbstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

4	<u> </u>	── ──┃
.	D. D.	
*	B _i = B _{St}	→ 8
	▼	
- Hamman		

h _i [mm]	h _G [mm]	B _i [mm]	B _{St} [mm]*	B _k [mm]	KR [mm]					q k [kg/m]
58	80	84	84	D_ 110	105	125	155	195	260	3,63
ენ	οU	384	384	B _{St} + 16	295	325	365	430		4,11

^{*} im 1 mm Breitenraster

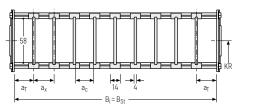
LS1050 . Typenreihe	180 B _{St} [mm]	. RS 2 . Stegbauart	125 KR [mm]	Sb Werkstoff	2415 L _k [mm]	HS Steganordnung

LS/LSX1050 RS 2 | Innenaufteilung | TS0 · TS1 · TS2

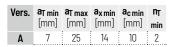
Trennstegsysteme

Montiert wird das Trennstegsystem standardmäßig an jedem Verbindungssteg – bei Stegmontage an jedem 2. Kettenglied (HS).

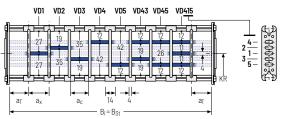
Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).


Für Anwendungen mit Querbeschleunigungen und auf der Seite liegende Anwendungen sind die Trennstege durch einfaches Aufstecken einer im Zubehör erhältlichen Tülle fixierhar

Die Tülle dient zusätzlich als Abstandshalter zwischen den Trennstegen und ist im 1 mm Raster zwischen 3–50 mm, sowie 16,5 und 21,5 mm verfügbar **(Version B)**.

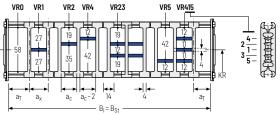

Trennstegsystem TSO ohne Höhenunterteilung

Vers.	a_{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	7	14	10	-

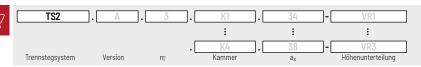

Die Trennstege sind im Querschnitt verschiebbar.

Trennstegsystem TS1 mit durchgehender Höhenunterteilung

Die Trennstege sind im Querschnitt verschiebbar.



Trennstegsystem TS2 mit partieller Höhenunterteilung


Mit Rasterunterteilung (1 mm Raster). Die Trennstege sind durch die Höhenunterteilung fixiert, das Raster ist im Querschnitt verschiebbar.

Optional sind verschiebbare Trennstege (Trennstegdicke = 4 mm) verfügbar.

Bitte beachten Sie, dass die tatsächlichen Maße von den hier angegebenen Werten leicht abweichen können.

Bestellbeispiel

Serie XLT

ROBOTRAX® System

W. BEB. W.

FLATVEYOR

CLEANVEYOR®

Serie LS/LSX

erie S/SX

Serie /SX-Tubes

?ubehör

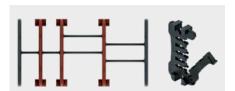
TRAXI INF®

Änderungen vorbehalten.

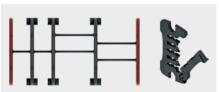
šerie Z

R0B0TRAX® System

CLEANVEYOR®

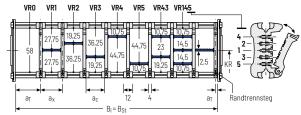

serie S/SX

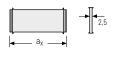
LS/LSX1050 RS 2 | Innenaufteilung | TS3


Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden

Standardmäßig wird der Trennsteg **Version A** zur vertikalen Unterteilung innerhalb der Energieführung eingesetzt. Das komplette Trennstegsystem ist im Querschnitt verschiebbar.

Trennsteg Version A


Randtrennsteg



Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T min
Α	6/2*	14	10	2

* Bei Randtrennsteg

Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Querschnitt verschiebbar.

**															
a _c (Nutzbreite Innenkammer) [mm]															
16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	
	12 59	12 15 59 64	12 15 19 59 64 68	16 19 23 24 12 15 19 20 59 64 68 69	16 19 23 24 28 12 15 19 20 24 59 64 68 69 74	a _c (Nutzb 16 19 23 24 28 29 12 15 19 20 24 25 59 64 68 69 74 78	16 19 23 24 28 29 32 12 15 19 20 24 25 28 59 64 68 69 74 78 79	ac (Nutzbreite Innen 16 19 23 24 28 29 32 33 12 15 19 20 24 25 28 29 59 64 68 69 74 78 79 80	a _c (Nutzbreite Innenkamn 16 19 23 24 28 29 32 33 34 12 15 19 20 24 25 28 29 30 59 64 68 69 74 78 79 80 84	a _c (Nutzbreite 16 19 23 24 28 29 32 33 34 38 12 15 19 20 24 25 28 29 30 34 59 64 68 69 74 78 79 80 84 88	Tac (Nutzbreite Innenkammer) [mm] 16 19 23 24 28 29 32 33 34 38 39 12 15 19 20 24 25 28 29 30 34 35 59 64 68 69 74 78 79 80 84 88 89	16 19 23 24 28 29 32 33 34 38 39 43 12 15 19 20 24 25 28 29 30 34 35 39 59 64 68 69 74 78 79 80 84 88 89 94	16 19 23 24 28 29 32 33 34 38 39 43 44 44 45 45 46 46 68 69 74 78 79 80 84 88 89 96 96	Bac (Nutzbreite Under State U	*· * * · · ·

Beim Einsatz von Zwischenböden mit ax > 49 mm empfehlen wir eine zusätzliche bevorzugt mittige Abstützung.

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (TSO, TS1...), die Version, sowie die Anzahl der Trennstege pro Querschnitt [n_T] angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände [a_T/a_x] eintragen (Mitnehmeransicht).

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TS1, TS3) bitte zusätzlich die Positionen [z.B. VD23] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Serie XLT

R0B0TRAX® System

ROBO

CLEANVEYOR® FLATVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

Zubehör

@

TRAXLINE®

Serie XLT

ROBOTRAX® System

CLEANVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

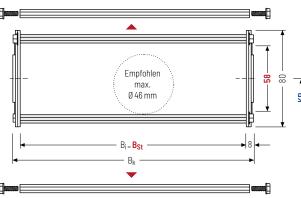
Zubehör

LS/LSX1050 RV | Abmessungen · Technische Daten

Aluminiumsteg RV -

Rahmensteg Verstärkt

- » Aluminium-Profilstäbe für mittlere bis starke Belastungen und große Kettenbreiten. Beidseitig doppelte Schraubverbindung.
- » Kundenindividuell im 1 mm Raster lieferbar.
- Außen/Innen: Verschraubung einfach zu lösen.



Steganordnung an jedem 2. Kettenglied, Standard (HS: halbstegig)

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

4	"Security of "	# <u></u>
 	B _i = B _{St}	8
	*	

h _i [mm]	h _G [mm]	B _i [mm]	B _{St} [mm]*	B _k [mm]	KR [mm]					q_k [kg/m]
58	80	84	84 584 B _{St} + 16	D . 10	105	125	155	195	260	4,00
		584		DSt + 10	295	325	365	430		5,95

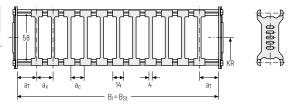
^{*} im 1 mm Breitenraster

šerie Z

ROBOTRAX® System

CLEANVEYOR®

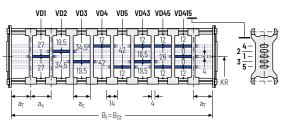
Trennstegsysteme


Montiert wird das Trennstegsystem standardmäßig an jedem Verbindungssteg – bei Stegmontage an jedem 2. Kettenglied (HS).

Standardmäßig sind Trennstege bzw. das komplette Trennstegsystem (Trennstege mit Höhenseparierungen) im Querschnitt verschiebbar (Version A).

Trennstegsystem TSO ohne Höhenunterteilung

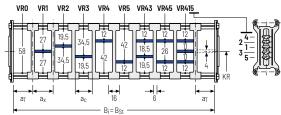
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	7	14	10	-


Die Trennstege sind im Querschnitt verschiebbar.

Trennstegsystem TS1 mit durchgehender Höhenunterteilung

Vers.		a _{T max} [mm]			
Α	7	25	14	10	2

Die Trennstege sind im Querschnitt verschiebbar.



Trennstegsystem TS2 mit partieller Höhenunterteilung

Vers.	a_{T min} [mm]	a_{x min} [mm]	a _{c min} [mm]	n _{T min}	
Α	8	21	15	2	

Mit Rasterunterteilung (1 mm Raster). Die Trennstege sind durch die Höhenunterteilung fixiert, das Raster ist im Querschnitt verschiebbar.

Optional sind verschiebbare Trennstege (Trennstegdicke = 4 mm) verfügbar.

TRAXLINE® Leitungen für Energieführungen

Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter **tsubaki-kabelschlepp.com/traxline**

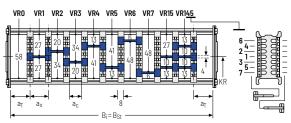
šerie Z

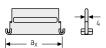
ROBOTRAX® System

CLEANVEYOR®

Serie S/SX

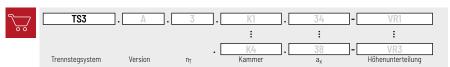
Serie S/SX-Tubes


LS/LSX1050 RV | Innenaufteilung | TS3


Trennstegsystem TS3 mit Höhenunterteilung aus Kunststoff-Zwischenböden

* Bei Zwischenböden aus Aluminium

Die Trennstege sind durch die Zwischenböden fixiert, das komplette Trennstegsystem ist im Querschnitt verschiebbar.



Es sind auch Zwischenböden aus Aluminium im 1mm Breitenraster mit a_v > 42 mm lieferbar.

Beim Einsatz von Kunststoff-Zwischenböden mit ax > 112 mm empfehlen wir eine zusätzliche mittige Abstützung mit einem **Twintrennsteg** (S_T = 4 mm). Twintrennstege sind auch zur nachträglichen Montage im Zwischenbodensystem geeignet.

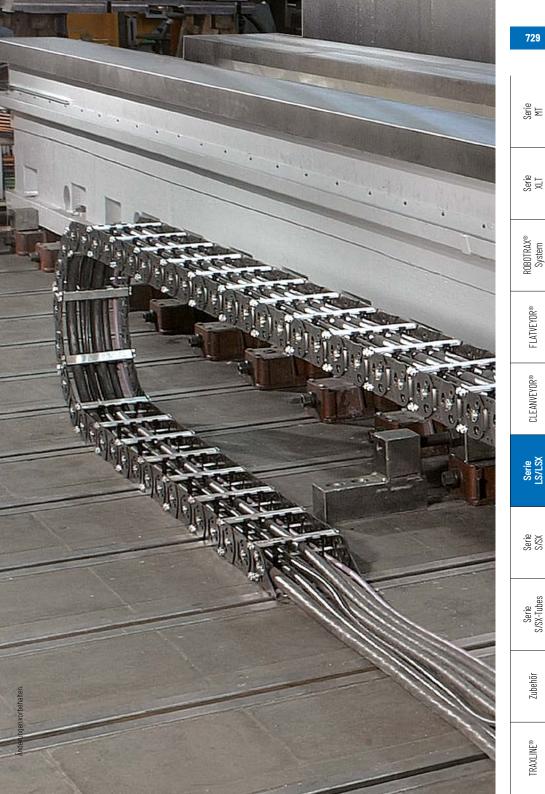
Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (TSO, TS1...), die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_{\overline{1}}]$ angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände [a_T/a_x] eintragen (Mitnehmeransicht).

Bei Verwendung von Trennstegsystemen mit Höhenunterteilung (TS1 - TS3) bitte zusätzlich die Positionen [z.B. VD23] vom linken Mitnehmerband aus angeben. Sie können Ihrer Bestellung gerne eine Skizze beifügen.

Weitere Produktinformationen online

Montageanleitungen uvm.: Mehr Infos auf Ihrem Smartphone oder


tsubaki-kabelschlepp.com/ downloads

Konfigurieren Sie hier Ihre Energieführungskette: online-engineer.de

Anderungen vorbehalten.

TRAXLINE®

Serie XLT

ROBOTRAX® System

FLATVEYOR®

CLEANVEYOR®

Serie LS/LSX

Serie S/SX

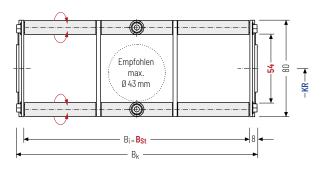
Serie S/SX-Tubes

Zubehör

Rohrsteg RR -

Rahmensteg, Rohrausführung

- » Rollensteg aus Stahl mit schonender Leitungsauflage und Stahl-Trennstegen. Ideal für den Einsatz von Medienschläuchen mit weichen Ummantelungen.
- » Kundenindividuell im 1 mm Raster lieferbar.
- » Außen/Innen: Verschraubung lösbar.
- » Option: Trennstegsystem aus Stahl und Edelstahl ER1, ER1S



Steganordnung an jedem 2. Kettenglied, **Standard** (**HS: halbstegig**)

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

h _i [mm]	h _G [mm]	B _i [mm]	B _{St} [mm]*	B _k [mm]		q_k [kg/m]				
54	80	84 484	84	B _{St} + 16	105	125	155	195	260	4,25 -
			484	231 .0	295	325	365	430		7,80

^{*} im 1 mm Breitenraster

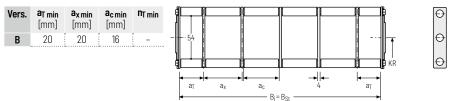
	125 . Sb - 2415 HS Steganordnung
--	----------------------------------

šerie Z

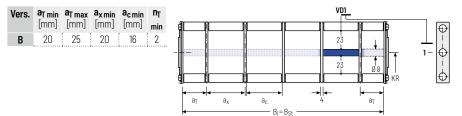
ROBOTRAX® System

FLATVEY0R®

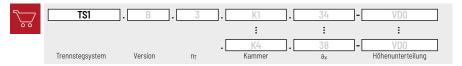
CLEANVEYOR®


Serie S/LSX

Trennstegsysteme


Montiert wird das Trennstegsystem standardmäßig an jedem Verbindungssteg – bei Stegmontage an jedem 2. Kettenglied (HS).

Die Trennstege sind durch die Rohre fixiert. Das Rohr dient zusätzlich als Abstandshalter zwischen den Trennstegen **(Version B)**.


Trennstegsystem TSO ohne Höhenunterteilung

Trennstegsystem TS1 mit durchgehender Höhenunterteilung

Bestellbeispiel

Bitte die Bezeichnung des Trennstegsystems (TSO, TS1...), die Version, sowie die Anzahl der Trennstege pro Querschnitt $[n_{\overline{l}}]$ angeben. Zudem bitte zusätzlich die Kammern [K] von links nach rechts, sowie die Montageabstände $[a_{\overline{l}}/a_x]$ eintragen (Mitnehmeransicht).

TRAXLINE® Leitungen für Energieführungen

Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter **tsubaki-kabelschlepp.com/traxline**

TRAXLINE®

Zubehör

Serie XLT

ROBOTRAX® System

CLEANVEYOR®

Serie S/SX

Serie LS/LSX

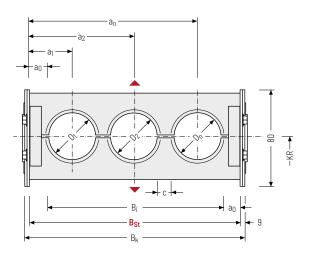
Serie S/SX-Tubes

Zubehör

Aluminiumsteg LG -

Lochsteg, geteilte Ausführung

- » Optimale Leitungsführung in der neutralen Biegelinie. Geteilte Ausführung zur einfachen Leitungsführung. Stege auch ungeteilt lieferbar.
- » Kundenindividuell im 1 mm Raster lieferbar.
- Außen/Innen: Verschraubung einfach zu lösen.


HEAVY DUTY

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Kettenlänge L_k aufgerundet auf Teilung t

Berechnung der Stegbreite

Stegbreite B_{St}

$$B_{St} = \sum D + \sum c + 2a_0$$

D _{max} [mm]	D _{min} [mm]	h _G [mm]	B _i [mm]	B _{St} [mm]*	B_k [mm]	c _{min} [mm]	a _{0 min} [mm]	KR [mm]				q_k 50 %** [kg/m]	
/0	12	- 80	54 82 554 582	82	B _{St} + 18	- 4	14	105	125	155	195	260	4,00
48				582				295	325	365	430		7,99

^{*} im 1 mm Breitenraster ** Bohrungsanteil des Lochstegs ca. 50 %

LS1050	180	LG .	125	. Sb -	2415	HS
Typenreihe	B _{St} [mm]	Stegbauart	KR [mm]	Werkstoff	L _k [mm]	Steganordnung

733

Serie MT

Serie XLT

ROBOTRAX® System

CLEANVEYOR® FLATVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

Zubehör

TRAXLINE®

serie XLT

ROBOTRAX® System

FLATVEY0R[®]

CLEANVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

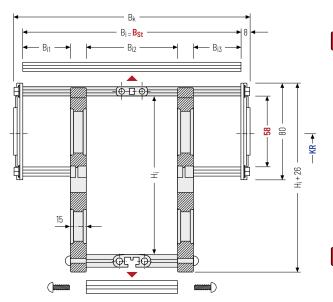
Zubehör

gnZ

Aluminiumsteg RMAI -

Rahmen-Aufbausteg

- » Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Der Aufbau-Rahmensteg wird innen im Krümmungsradius montiert.
- » Kundenindividuell im 1 mm Raster lieferbar.
- » Innen: Verschraubung einfach zu lösen.



Steganordnung an jedem 2. Kettenglied, **Standard** (HS: halbstegig)

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\label{eq:KettenlängeLkaufgerundet} \text{ Kettenlänge}\,L_k\,\text{aufgerundet}$ auf Teilung t

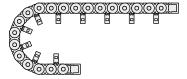
Retteneigengewicht

Die Ermittlung des Ketteneigengewichts ist stark abhängig von der gewählten Steganordnung. Bitte sprechen Sie uns an.

	h _i [mm]	H _i [mm]	h _G [mm]	B _i [mm]	B _{i1min} [mm]	B _{i2 min} [mm]	B _{i3 min} [mm]	B _{St} [mm]*	B _k [mm]	KR [mm]		
58	130		184	35	84	35	184 384	B _{St} + 16	195	260	295	
	58	160 80 200	384						325	365	430	

^{*} im 1 mm Breitenraster

LS/LSX1050 RMAI | Abmessungen · Technische Daten


RMAI - Montage nach innen:

Unter Verwendung der Montageversion RMAI ist keine gleitende Anwendung möglich.

Mindest-KR beachten:

 $H_i = 130 \text{ mm}$: $KR_{min} = 195 \text{ mm}$

 $H_i = 160 \text{ mm}: KR_{min} = 260 \text{ mm}$ $H_i = 200 \text{ mm}$: $KR_{min} = 260 \text{ mm}$

TOTALTRAX® Komplettsysteme

Profitieren Sie von den Vorteilen eines TOTALTRAX®-Komplettsystems. Eine Komplettlieferung aus einer Hand - auf Wunsch mit Gewährleistungszertifikat! Erfahren Sie mehr unter tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® Leitungen für Energieführungen

Hochflexible Elektroleitungen, die speziell für den Einsatz in Energieführungsketten entwickelt, optimiert und getestet wurden, finden Sie unter tsubaki-kabelschlepp.com/traxline

serie XLT

ROBOTRAX® System

CLEANVEYOR®

Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

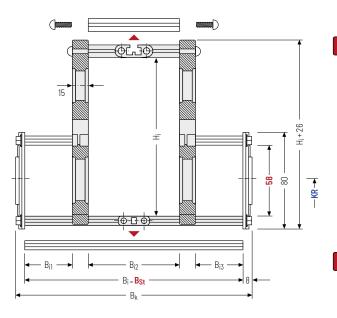
Zubehör

LS/LSX1050 RMA0 | Abmessungen · Technische Daten

Aluminiumsteg RMAO -

Rahmen-Aufbausteg

- » Aluminium-Profilstäbe mit Kunststoff-Aufbaustegen zur Führung sehr großer Leitungsdurchmesser.
- » Der Aufbau-Rahmensteg wird außen im Krümmungsradius montiert.
- » Kundenindividuell im 1 mm Raster lieferbar.
- » Außen: Verschraubung einfach zu lösen.



Steganordnung an jedem 2. Kettenglied, **Standard** (HS: halbstegig)

Steganordnung an jedem Kettenglied **(VS: vollstegig)**

Der maximale Leitungsdurchmesser ist stark abhängig vom Krümmungsradius und dem gewünschten Leitungstyp. Bitte sprechen Sie uns an.

Berechnung der Kettenlänge

Kettenlänge L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

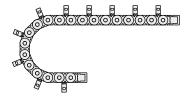
Kettenlänge L_k aufgerundet auf Teilung t

Retteneigengewicht

Die Ermittlung des Ketteneigengewichts ist stark abhängig von der gewählten Steganordnung. Bitte sprechen Sie uns an.

	h _i [mm]	H _i [mm]	h _G [mm]	B _i [mm]	B _{i1min} [mm]	B _{i2 min} [mm]	B _{i3 min} [mm]	B _{St} [mm]*	B _k [mm]	KR [mm]		
58	130		184				184		105	125	155	
		160	80		35	84	35	_	B _{St} + 16	195	260	295
	200		384				384		325	365	430	

^{*} im 1 mm Breitenraster


LS/LSX1050 RMA0 | Abmessungen · Technische Daten

RMAO - Montage nach außen:

Die Energieführung muss sich auf den Kettenbändern und nicht auf den Stegen ablegen.

Zur Unterstützung ist die Führung in einem **Kanal erforderlich**. Für den passenden Führungskanal wenden Sie sich bitte an unseren technischen Support unter technik@kabelschlepp.de.

Bitte beachten Sie die Ablauf- und Einbauhöhe.

Serie MT

Serie XLT

ROBOTRAX® System

FLATVEYOR

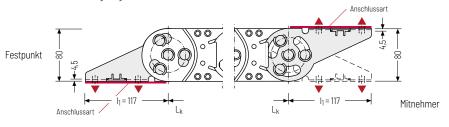
CLEANVEY0R[®]

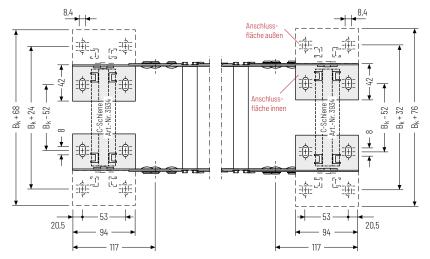
Serie LS/LSX

Serie S/SX

Serie S/SX-Tubes

Zubehör


RAXLINE®



LS/LSX1050 | Anschlusselemente | Stahlwinkel


Anschlusselemente - Stahl

Anschlusswinkel aus Stahl. Die Anschlussvarianten am Festpunkt und am Mitnehmer können kombiniert und falls erforderlich, nachträglich geändert werden.

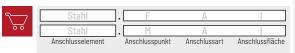
▲ Montagemöglichkeiten

Anschlusspunkt

F - Festpunkt

M - Mitnehmer

Anschlussfläche


A - Anschlussfläche außen

I – Anschlussfläche innen

Anschlussart

- A Verschraubung nach außen (Standard)
- Verschraubung nach innen

Bestellbeispiel

Wir empfehlen die Verwendung von Zugentlastungen vor Mitnehmer und Festpunkt. Siehe ab S. 924.