
TKHP series

tsubaki-kabelschlepp.com/trademarks

High-Performance cable carriers for long travel lengths and high additional loads

- 1 Aluminum stays available in 1 mm width sections
- 2 Plastic chain link plates
- 3 Quick and easy opening to the inside or outside for cable laying
- 4 Cable-friendly interior no interfering edges
- 5 Fixable dividers
- 6 Dividers and subdivision for separating the cables
- 7 Replaceable glide shoes for increased service life in gliding application
- 8 Robust, multiple stop system
- 9 Steel installation brackets
- 10 With integrated roll for standard quide channels
- 11 With roller damping

Features

- » Massive, enclosed, stain-repellend stop system
- » Massive sidebands through robust double fork-bracket-construction
- » Sidebands easy to assemble
- » Reinforced symmetrically arranged pin bore connection for better force transmission
- » Integrated noise damping
- » Quick and easy opening to the inside or outside for cable laying
- » Soil-resistant outer contour
- » Easy change of components

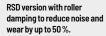
Very smooth running of the roller system due to almost continuous running surface.

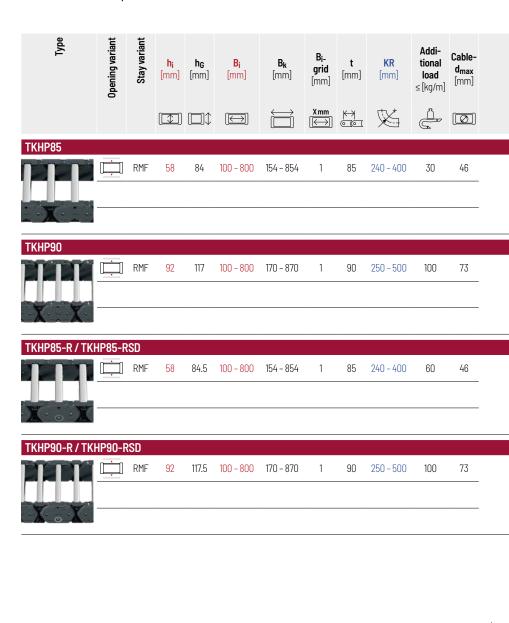
A non-slip structure on the running surface prevents one-sided roller wear after a standstill.

- » Linear force curve in the sideband
- » Quiet and low-wear operating through polygonoptimized contour and radii
- » Reduce drive power through less friction

Roller chain for travel

distances up to 1500 m.





TKHP series | Overview

Unsuppo	rted arrai	ngement	Gliding/Rolling arrangement		ı	nner Dis	tributio	1	Mo	veme	nt	Page	
Travel length ≤ [m]	V _{max} ≤ [m/s]	\mathbf{a}_{max} $\leq [\text{m/s}^2]$	Travel length ≤ [m]	V _{max} ≤ [m/s]	\mathbf{a}_{max} $\leq [\text{m/s}^2]$	TSO	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	
5.8	5	20	200	5	2.5	•	•	-	-	•	-	-	454
13.5	8	20	200	5	2.5	•	•	-	-	•	-	-	460
-	-	-	1200	5	50	•	•	-	-	•	-	-	466
-	_	-	1500	10	50	•	•	-	-	-	-	-	472

PROTUM® series

K series

UNIFLEX Advanced series

> M series

TKHP series

XL series

QUANTUM® series

TKR series

TKA series

XL eries

TKHP85

Stay variants

Aluminum stay RMF.....page 454

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Inside/outside: Threaded joint easy to release.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source - with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

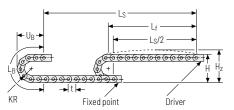
Hi-flex electric cables which were specially developed, optimised and tested for use in cable carriers can be found at

tsubaki-kabelschlepp.com/traxline.

PROTUM® series

UNIFLEX dvanced series

)UANTUM® series


TKR eries

TKA eries

UAT eries

TKHP85 | Installation dim. | Unsupported · Gliding

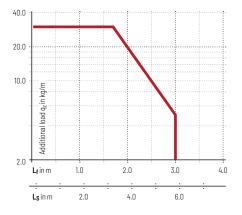
Unsupported arrangement

KR	KR H		L_{B}	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
240	574	704	930	300
300	694	824	1120	360
350	794	924	1270	410
400	894	1024	1430	460

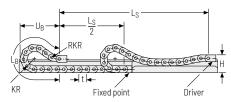
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific applica-

Intrinsic cable carrier weight $q_k = 10 \text{ kg/m}$. For other inner widths, the maximum additional load changes.



up to 5.9 m



Additional load up to 30 ka/m

Acceleration

Gliding arrangement | GO module with chain links optimized for gliding

KR [mm]	H [mm]	GO module RKR [mm]	L _B [mm]	U _B [mm]	q z max [kg/m]
240	252	500	1780	1050	60
300	252	500	2190	1270	60
350	252	500	2490	1450	40
400	252	500	2820	1630	20

Speed up to 5 m/s

The gliding cable carrier must be guided in a channel. See p. 844.

Travel length up to 200 m

Additional load up to 60 kg/m

The GO module mounted on the driver is a defined sequence of adapted KR/RKR link plates.

Glide shoes must be used for gliding applications.

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

TKHP85 RMF | Dimensions · Technical data

PR0TUM® series

> K series

UNIFLEX Advanced series

> M series

TKHP series

XL series

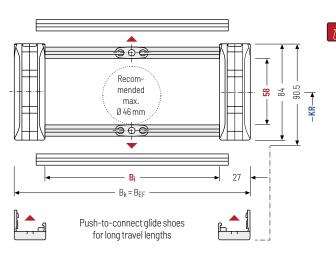
QUANTUM® series

TKR

TKA

Aluminum stay RMF -

frame stay solid


- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in 1 mm grid.
- » Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

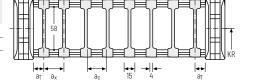
h _i	h _G	h gʻ	B _i	B _k	B _{EF}	KR	q k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
58	84	90.5	100 - 800	B _i + 54	B _i + 54	240 300 350 400	6.02 - 13.12

^{*} in 1 mm width sections

TKHP85 .	400 .	RMF .	300 -	2125	VS
Туре	B _i [mm]	Stay variant	KR [mm]	L _k [mm]	Stay arrangement

TKHP85 RMF | Inner distribution | TS0 · TS1

Divider systems


As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

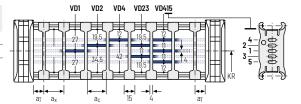
As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section **(version A)**.

For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (version B).

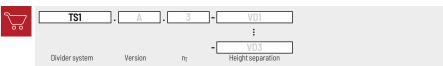
Divider system TSO without height separation

Vers.				a_{x Raster} [mm]	n T min
Α	7.5/10.5*	15	11	-	-
В	7.5/10.5*	15	11	5	-

* With glide shoes


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation


Vers.				a_{x Raster} [mm]	
Α	7.5/10.5*	15	11	-	2
В	7.5/10.5*	15	11	5	2

* With glide shoes

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section $[n_{\overline{1}}]$.

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

PROTUM® series

> K series

UNIFLEX Advanced series

> M series

TKHP

XL series

)UANTUM® series

TKR series

TKA series

UAT

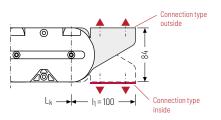
Subject to change without notice.

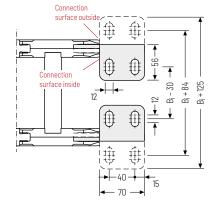
PR0TUM® series

K series

UNIFLEX Advanced series

X eries


QUANTUM® series


TKR series

TKA series

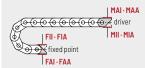
End connectors - steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

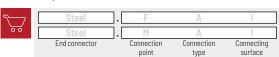
Assembly options

Connection point

M - driver


F - fixed point

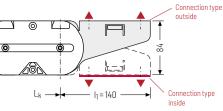
Connecting surface

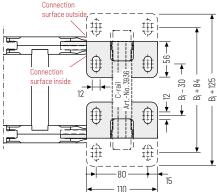

- A connecting surface outside
- connecting surface inside

Connection type

- A threaded joint outside (standard)
- I threaded joint inside

Order example




We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

TKHP85 | End connectors

End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point

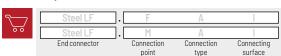
F - fixed point

M - driver

A - connecting surface outside

Connecting surface

connecting surface inside


Connection type

A - threaded joint outside (standard)

I - threaded joint inside

Order example

Additional product information online

Installation instructions, etc.: Additional info via your smartphone or check online at

tsubaki-kabelschlepp.com/ downloads

Configure your cable carrier here: online-engineer.de

UAT

XL eries

TKHP90

Stay variants

Aluminum stay RMF.....page 460

page +0

Frame stay, solid

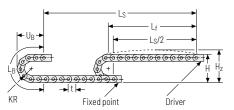
- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Inside/outside: Threaded joint easy to release.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX $^{\circ}$ complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at **tsubaki-kabelschlepp.com/totaltrax**

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were specially developed, optimised and tested for use in cable carriers can be found at


tsubaki-kabelschlepp.com/traxline.

PROTUM® series

UNIFLEX dvanced series

TKHP90 | Installation dim. | Unsupported · Gliding

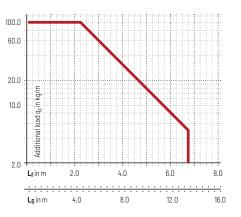
Unsupported arrangement

KR	Н	H_z	L_{B}	U_{B}
[mm]	[mm]	[mm]	[mm]	[mm]
250	675.5	860	965	510
310	795.5	980	1154	570
360	895.5	1080	1311	620
500	1175.5	1360	1751	680
***************************************	•			•

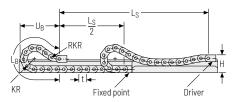
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific applica-

Intrinsic cable carrier weight $q_k = 10 \text{ kg/m}$. For other inner widths, the maximum additional load changes.



Speed up to 8 m/s



Gliding arrangement | GO module with chain links optimized for gliding

KR [mm]	H [mm]	GO module RKR [mm]	L _B [mm]	U _B [mm]	q z max [kg/m]
250	351	600	1840	1030	100
310	351	600	2200	1230	100
360	351	600	2520	1400	90
500	351	600	3410	1880	75

Speed up to 5 m/s

Travel length up to 200 m

The gliding cable carrier must be guided in a channel. See p. 844.

The GO module mounted on the driver is a defined sequence of adapted KR/RKR link plates.

Glide shoes must be used for gliding applications.

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Subject to change without notice.

UAT eries

QUANTUM® series

TKR eries

TKA eries

TKHP90 RMF | Dimensions · Technical data

PR0TUM[®] series

K series

UNIFLEX Advanced series

> M series

TKHP series

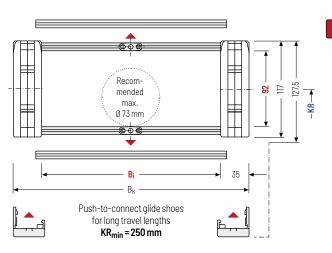
XL series

QUANTUM® series

TKR

TKA series Aluminum stay RMF -


frame stay solid


- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in 1 mm grid.
- » Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

h _i	h _G	h gʻ	B i	B _k	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm] [i	kg/m]
92	117	127.5	100 - 800	B _i + 70	250 310 360 500 10.3	7 - 17.47

^{*} in 1 mm width sections

	TKHP90 .	400	. RMF .	310 -	2700	VS
00	Туре	B _i [mm]	Stay variant	KR [mm]	L _k [mm]	Stay arrangement

PROTUM® series

UNIFLEX dvanced series

> M eries

XL eries

)UANTUM® series

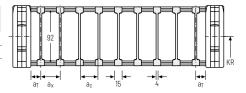
TKR eries

TKA eries

TKHP90 RMF | Inner distribution | TS0 · TS1

Divider systems

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

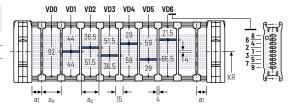

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section **(version A)**.

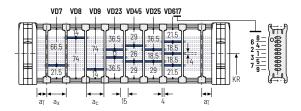
For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (version B).

Divider system TSO without height separation

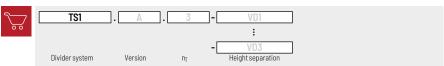
Vers.				a_{x grid} [mm]	n T min
Α	7.5	15	11	-	-
В	10	15	11	5	-

The dividers can be moved within the cross section (version A) or fixed (version B).





Divider system TS1 with continuous height separation


Vers.				a_{x grid} [mm]	n _T min
Α	7.5	15	11	-	-
В	10	15	11	5	-

The dividers can be moved within the cross section (version A) or fixed (version B).

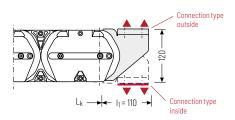
Order example

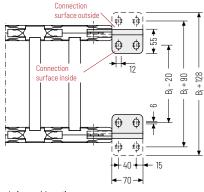
Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section $[n_T]$.

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

Subject to change without notice.

PR0TUM® series


K series


UNIFLEX Advanced series

TKHP90 | End connectors

End connectors - steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

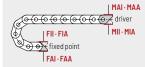
▲ Assembly options

Connection point

M - driver

F - fixed point

Connecting surface


A - connecting surface outside

connecting surface inside

Connection type

A - threaded joint outside (standard)

I - threaded joint inside

Order example

We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

X eries

QUANTUM® series

TKR series

TKA series

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Connection type $I_1 = 160$ Connection type inside

Connection surface outside B₁ - 20 B₁ + 90 B₁ + 128 surface inside

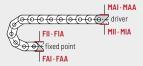
Use only with C-rail.

▲ Assembly options

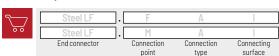
Connection point

F - fixed point

M - driver


Connecting surface A - connecting surface outside

connecting surface inside


Connection type

A - threaded joint outside (standard)

I - threaded joint inside

Order example

Additional product information online

Installation instructions, etc.: Additional info via your smartphone or check online at

tsubaki-kabelschlepp.com/ downloads

Configure your cable carrier here: online-engineer.de

UAT

TKHP85-R TKHP85-RSD

High-Performance cable carrier with integrated roller

Pitch 85 mm

Inner height 58 mm

Inner widths 100 - 800 mm

Stainless steel ball bearings with application-specific lubrication and plastic rollers ensure quiet and smooth operation. Integrated, low-wear damping systems minimize the mechanical load for the entire system.

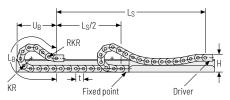
The cable carrier type TKHP85-RSD (Shock Damping) uses roller damping. The rollers of the RSD variant are damped when they pass over each other, which reduces both the mechanical load and the noise pollution when they roll over by up to $50\,\%$.

The use of roller damping is not always necessary. An undamped cable carrier system can also be used for low-speed applications.

- » TKHP85-R with rollers
- » TKHP85-RSD with rollers and shock absorber
- » suitable for all long travel applications
- » quiet and low-vibration operation
- » space-saving and cost-optimized
- » long service life low maintenance
- » easy access to rollers

- » minimized loads on cable carrier and cables
- » low push and pull forces
- » high travel speed and acceleration
- » large additional loads possible
- » retrofit of existing systems
- » exchange other makes up to $100\,\%$
- » integration of existing guide channels

Stay variants


Aluminum stay RMF.....page 466

Frame stay, solid

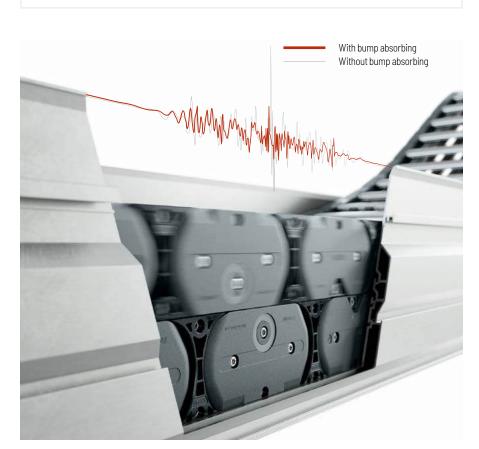
- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Inside/outside: Threaded joint easy to release.

TKHP85-R / -RSD | Installation dim. | Rolling

Rolling arrangement | Cable carrier with integrated roller

KR	Н	GO module RKR	L_B	U_B	q _{z max}	
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	
240	252	500	1780	1050	60	
300	252	500	2190	1270	60	
350	252	500	2490	1450	40	
400	252	500	2820	1630	20	

Speed up to 5 m/s


The rolling cable carrier must be guided in a channel. See p. 844.

Travel length up to 1200 m

The GO module mounted on the driver is a defined sequence of 4 adapted KR/RKR link plates.

Our technical support can provide help for rolling arrangements: technik@kabelschlepp.de

PROTUM® series

> K series

UNIFLEX Advanced series

> M series

TKHP series

XL series

QUANTUM® series

TKR series

TKA series

TKHP85-R / -RSD RMF | Dimensions · Technical data

PR0TUM® series

> K series

UNIFLEX Advanced series

> M series

TKHP series

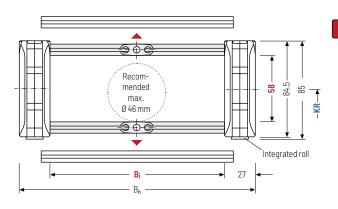
XL series

QUANTUM® series

TKR

TKA series Aluminum stay RMF -

frame stay solid


- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in 1 mm grid.
- » Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

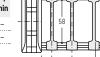
Cable carrier length L_k rounded to pitch t for odd number of chain links

h _i [mm]	h _G [mm]	h g [,] [mm]	B _i [mm]*	B _k [mm]		[KR mm]		q_k [kg/m]	
58	84.5	85	100 - 800	B _i + 54	240	300		350	400	6.02 - 13.12	

^{*} in 1 mm width sections

TKHP85-R / -RSD RMF | Inner distribution | TS0 · TS1

Divider systems

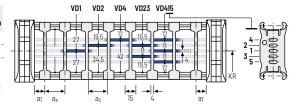

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section **(version A)**.

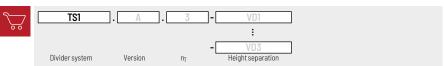
For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (version B).

Divider system TSO without height separation

Vers.				a_{x grid} [mm]	n T min
Α	7.5/10.5*	15	11	-	-
В	7.5/10.5*	15	11	5	-


The dividers can be moved within the cross section (version A) or fixed (version B).

Divider system TS1 with continuous height separation


Vers.	a_{T min} [mm]			a_{x grid} [mm]	n T min
Α	7.5/10.5*	15	11	-	2
В	7.5/10.5*	15	11	5	2

* With glide shoes

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section $[n_{\overline{1}}]$.

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

PROTUM® series

> K series

UNIFLEX Advanced series

Meries

Series

XL series

)UANTUM® series

TKR series

TKA series

UAT

Subject to change without notice.

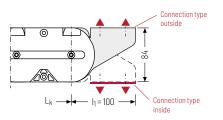
^{*} With glide shoes

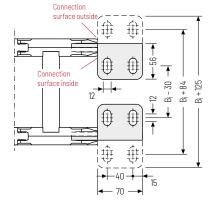
PR0TUM® series

K series

UNIFLEX Advanced series

X eries


QUANTUM® series


TKR series

TKA series

End connectors - steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

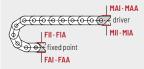
▲ Assembly options

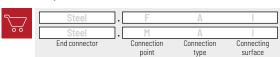
Connection point

M - driver

F - fixed point

Connecting surface

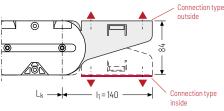

A - connecting surface outside

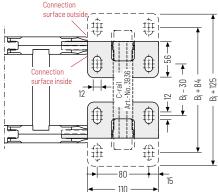

connecting surface inside

Connection type

A - threaded joint outside (standard)

I - threaded joint inside





TKHP85-R / -RSD | End connectors

End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

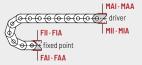
▲ Assembly options

Connection point

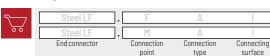
F - fixed point

M - driver

Connecting surface


A - connecting surface outside

I - connecting surface inside


Connection type

A - threaded joint outside (standard)

I - threaded joint inside

Order example

Additional product information online

Installation instructions, etc.: Additional info via your smartphone or check online at

tsubaki-kabelschlepp.com/ downloads

Configure your cable carrier here: **online-engineer.de**

PROTUM® series

K series

UNIFLEX Advanced series

> M eries

TKHP

XL series

QUANTUM® series

TKR series

TKA series

TKHP90-R TKHP90-RSD

High-Performance cable carrier with integrated roller

Pitch 90 mm

Inner height 92 mm

Bending radii 250 - 500 mm

Stainless steel ball bearings with application-specific lubrication and plastic rollers ensure quiet and smooth operation. Integrated, low-wear damping systems minimize the mechanical load for the entire system.

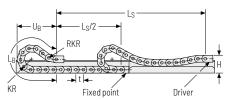
The cable carrier type TKHP90-RSD (Shock Damping) uses roller damping. The rollers of the RSD variant are damped when they pass over each other, which reduces both the mechanical load and the noise pollution when they roll over by up to 50%.

The use of roller damping is not always necessary. An undamped cable carrier system can also be used for low-speed applications.

- » TKHP90-R with rollers
- TKHP90-RSD with rollers and shock absorber
- » suitable for all long travel applications
- » quiet and low-vibration operation
- » space-saving and cost-optimized
- » long service life low maintenance
- » easy access to rollers

- » minimized loads on cable carrier and cables
- » low push and pull forces
- » high travel speed and acceleration
- » large additional loads possible
- » retrofit of existing systems
- » exchange other makes up to 100 %
- » integration of existing guide channels

Stay variants


Aluminum stav RMF.....page 472

Frame stay, solid

- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Inside/outside: Threaded joint easy to release.

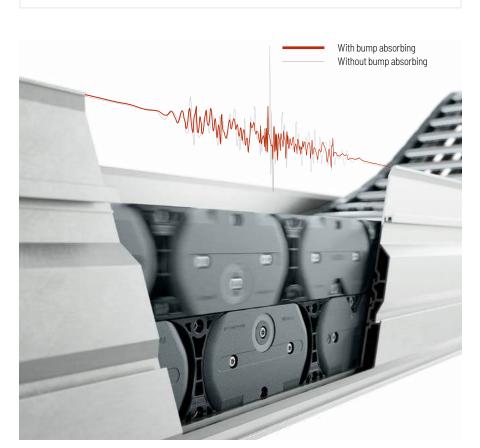
TKHP90-R / -RSD | Installation dim. | Rolling

Rolling arrangement | Cable carrier with integrated roller

KR	Н	GO module RKR	L_B	U_B	q _{z max}
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]
250	351	600	1840	1030	100
310	351	600	2200	1230	100
360	351	600	2520	1400	90
500	351	600	3410	1880	75

Speed up to 10 m/s

The rolling cable carrier must be guided in a channel. See p. 844.


Travel length up to 1500 m

The GO module mounted on the driver is a defined sequence of 6 adapted KR/RKR link plates.

Our technical support can provide help for rolling arrangements: technik@kabelschlepp.de

PROTUM® series

> K series

UNIFLEX Advanced series

> M series

TKHP series

XL series

QUANTUM® series

TKR series

TKA series

TKHP90-R / -RSD RMF | Dimensions · Technical data

PROTUM® series

K series

UNIFLEX Advanced series

> M series

TKHP series

XL series

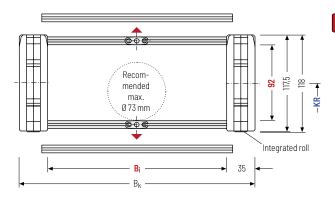
QUANTUM® series

TKR

TKA

Aluminum stay RMF -

frame stay solid


- » Aluminum profile bars for heavy loads and large cable carrier widths. Easy threaded connection.
- » Available customized in 1 mm grid.
- » Inside/outside: Threaded joint easy to release.

Stay arrangement on each chain link (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t for odd number of chain links

h _i [mm]	h _G [mm]	h g [,] [mm]	B _i [mm]*	B_k [mm]		[KR mm]		q k [kg/m]
92	117.5	118	100 - 800	B _i + 70	250	310		360	500**	10.37 - 17.47

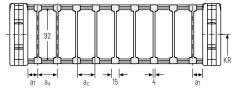
^{*} in 1 mm width sections ** When using this KR please contact our technical support.

TKHP90-R . 400 . RMF . 310 -	2700	VS
		40
Type B _i [mm] Stay variant KR [mm]	L _k [mm]	Stay arrangement

TKHP90-R / -RSD RMF | Inner distribution | TS0 · TS1

Divider systems

As a standard, the divider system is mounted on every 2nd chain link on the inside plate.

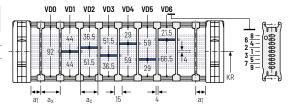

As a standard, dividers and the complete divider system (dividers with height separations) can be moved in the cross section (version A).

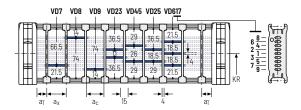
For applications with lateral acceleration and free hanging on the side, the dividers can be attached by simple insertion of a fixing profile into the RMF stay, available as an accessory (version B).

Divider system TSO without height separation

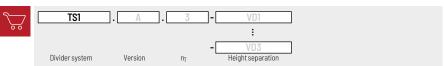
Vers.				a_{x grid} [mm]	n T min
Α	7.5	15	11	-	-
В	10	15	11	5	-

The dividers can be moved within the cross




section (version A) or fixed (version B).

Divider system TS1 with continuous height separation


Vers.				a _{x grid} [mm]	n T min
Α	7.5	15	11	-	-
В	10	15	11	5	-

The dividers can be moved within the cross section (version A) or fixed (version B).

Order example

Please state the designation of the divider system (TSO, TS1,...), the version, and the number of dividers per cross section [n-1.

When using divider systems with height separation (TS1), please additionally state the position (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

PROTUM® series

UNIFLEX dvanced series

XL eries

)UANTUM® series

TKR eries

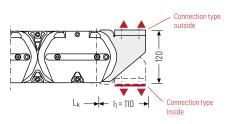
TKA eries

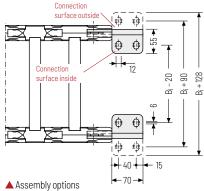
PR0TUM® series

K series

UNIFLEX Advanced series

X eries


QUANTUM® series


TKR series

TKA series

End connectors - steel short (standard)

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

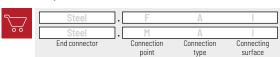
Connection point

M - driver

F - fixed point

Connecting surface

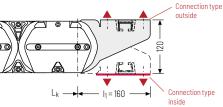
A - connecting surface outside

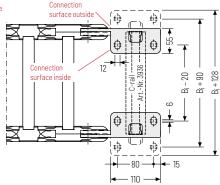

connecting surface inside

Connection type

A - threaded joint outside (standard)

I - threaded joint inside





TKHP90-R / -RSD | End connectors

End connectors LF - steel long

The connection variants on the fixed point and on the driver can be combined and changed later on, if necessary.

Use only with C-rail.

▲ Assembly options

Connection point

F - fixed point

M - driver

Connecting surface

A - connecting surface outside

connecting surface inside

Connection type

A - threaded joint outside (standard)

I - threaded joint inside

Order example

Additional product information online

Installation instructions, etc.: Additional info via your smartphone or check online at

tsubaki-kabelschlepp.com/ downloads

Configure your cable carrier here: **online-engineer.de**